Homework problems on Tensor, Symmetric, and Alternating products Math 423/502

Let V_{1} and V_{2} be complex vector spaces of dimension d_{1} and d_{2} respectively. The tensor product $V_{1} \otimes V_{2}$ can be defined as the vector space linearly spanned by vectors given by $v_{1} \otimes v_{2}$ where $v_{i} \in V_{i}$ subject to the relations

$$
\begin{aligned}
& \left(a v_{1}+a^{\prime} v_{1}^{\prime}\right) \otimes v_{2}=a\left(v_{1} \otimes v_{2}\right)+a^{\prime}\left(v_{1}^{\prime} \otimes v_{2}\right) \\
& v_{1} \otimes\left(a v_{2}+a^{\prime} v_{2}^{\prime}\right)=a\left(v_{1} \otimes v_{2}\right)+a^{\prime}\left(v_{1} \otimes v_{2}^{\prime}\right)
\end{aligned}
$$

Here $v_{i}, v_{i}^{\prime} \in V_{i}$ and $a, a^{\prime} \in \mathbb{C}$.

1. Let $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ be the vector space of linear maps $\phi: V_{1} \rightarrow V_{2}$. Let $V_{1}^{*}=\operatorname{Hom}\left(V_{1}, \mathbb{C}\right)$ be the dual space of linear functions on V_{1}.
(a) Show that the map

$$
V_{1}^{*} \otimes V_{2} \rightarrow \operatorname{Hom}\left(V_{1}, V_{2}\right)
$$

given by taking

$$
\phi \otimes v_{2} \mapsto\left(v_{1} \mapsto \phi\left(v_{1}\right) v_{2}\right)
$$

is an isomorphism of vector spaces.
(b) Show that if V_{1} and V_{2} are G-representations, then the above isomorphism is an isomorphism of G-representations. (In your solution, you will want to carefully recall how to define the G-representation structure on tensor products, dual vector spaces, and Hom spaces).
2. The symmetric group S_{n} acts on $V^{\otimes n}$ by

$$
\sigma\left(v_{1} \otimes \cdots \otimes v_{n}\right)=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)} .
$$

We may decompose $V^{\otimes n}$ into sums of irreducible representations of S_{n} and we define $\operatorname{Sym}^{n}(V) \subset$ $V^{\otimes n}$, respectively $\Lambda^{n} V \subset V^{\otimes n}$, to be the summand of the trivial, respectively alternating, S_{n} representation.
(a) Show that

$$
V \otimes V \cong \operatorname{Sym}^{2} V \oplus \Lambda^{2} V
$$

and show that

$$
V^{\otimes n} \not \not \operatorname{Sym}^{n} V \oplus \Lambda^{n} V
$$

for $n>2$.
(b) We could alternatively define $\operatorname{Sym}^{n} V$, respectively $\Lambda^{n} V$, to be the vector space linearly spanned by symbols $v_{1} \cdots v_{n}$, respectively $v_{1} \wedge \cdots \wedge v_{n}$ with $v_{i} \in V$ subject to the relations

$$
\begin{aligned}
\left(a v_{1}+a^{\prime} v_{1}^{\prime}\right) \cdot v_{2} \cdots v_{n} & =a\left(v_{1} \cdots v_{n}\right)+a^{\prime}\left(v_{1}^{\prime} \cdots v_{n}\right) \text { respectively, } \\
\left(a v_{1}+a^{\prime} v_{1}^{\prime}\right) & \wedge v_{2} \wedge \cdots \wedge v_{n}
\end{aligned}=a\left(v_{1} \wedge \cdots \wedge v_{n}\right)+a^{\prime}\left(v_{1}^{\prime} \wedge \cdots \wedge v_{n}\right), ~ l
$$

and

$$
\begin{array}{r}
v_{1} \cdots v_{i} \cdot v_{i+1} \cdots v_{n}=v_{1} \cdots v_{i+1} \cdot v_{i} \cdots v_{n} \text { respectively, } \\
v_{1} \wedge \cdots \wedge v_{i} \wedge v_{i+1} \wedge \cdots \wedge v_{n}=-v_{1} \wedge \cdots \wedge v_{i+1} \wedge v_{i} \wedge \cdots \wedge v_{n}
\end{array}
$$

for all i from 1 to $n-1$. Show that these two definitions agree.
3. Compute the dimension of $\operatorname{Sym}^{n} V$ and $\Lambda^{n} V$ if the dimension of V is d.
4. Show that

$$
\Lambda^{n}(V \oplus W) \cong \bigoplus_{k=0}^{n} \Lambda^{k} V \otimes \Lambda^{n-k} W
$$

where by definition $\Lambda^{0} W \cong \Lambda^{0} V \cong \mathbb{C}$.
5. Suppose that $f: V \rightarrow V$ is a linear map. Define linear maps

$$
\Lambda^{k} f: \Lambda^{k} V \rightarrow \Lambda^{k} V
$$

by

$$
v_{1} \wedge \cdots \wedge v_{k} \mapsto f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right)
$$

Let d be the dimension of V. Show that the map $\wedge^{d} f$ is multiplication by $\operatorname{det}(f)$.
6. Suppose that V is a G-representation. Then $\operatorname{Sym}^{n}(V)$ and $\Lambda^{n}(V)$ have the structure of G representations inherited from the G-representation structure on $V^{\otimes n}$. Suppose that V has dimension d and that $\Lambda^{d} V \cong \mathbb{C}$, that is $\Lambda^{d} V$ is isomorphic to the trivial G representation. Show that

$$
\Lambda^{d-1} V \cong V^{*}
$$

as G-representations.

