Homework problem set 5 Math 423/502

1. Let $x \in R$ be an element which is not a zero-divisor. Show that the first Tor group is the module of "x-torsion in M", namely:

$$\operatorname{Tor}_1(M, R/(x)) = \{m \in M \mid xm = 0\}.$$

Also compute $\operatorname{Tor}_1(R/(x), M)$ directly from the definition and see that it is also isomorphic to $\{m \in M \mid xm = 0\}$. (It is true that $\operatorname{Tor}_k(A, B) \cong \operatorname{Tor}_k(B, A)$ in general, but we have not yet proved that).

2. Let I and J be ideals of R. Let IJ be the ideal generated by elements ab where $a \in I$ and $b \in B$. Show that

$$Tor_1(R/I, R/J) = (I \cap J)/(IJ)$$

and use this to show that $I \cap J = IJ$ if I + J = R.

3. Let $x \in R$ be an element which is not a zero-divisor. Compute

$$\operatorname{Ext}_{R}^{i}(R/(x),M)$$

and in particular compute $\operatorname{Ext}^{i}(\mathbb{Z}/n,\mathbb{Z}/m)$ for all $n,m\in\mathbb{Z}$.

4. Provide an example of non-isomorphic extensions

$$0 \to B \to X \to A \to 0$$
$$0 \to B \to X' \to A \to 0$$

such that $X \cong X'$.

- 5. Let $R = \mathbb{C}[x, y]$ and let $\mathbb{C}_0 = R/(x, y)$. Use a free resolution of \mathbb{C}_0 to compute $\operatorname{Ext}^1_R(\mathbb{C}_0, \mathbb{C}_0)$. Explicitly write the extensions parameterized by $\operatorname{Ext}^1_R(\mathbb{C}_0, \mathbb{C}_0)$.
- 6. (**Optional**) Let I be any ideal in a ring R. Prove that

$$\operatorname{Ext}^{1}(R/I, R/I) = \operatorname{Hom}(I/I^{2}, R/I) = \operatorname{Hom}(\operatorname{Tor}_{1}(R/I, R/I), R/I).$$

(Use problem 2).